

Esco Global Offices | Singapore | Beijing & Shanghai, China | Manama, Bahrain | Philadelphia, USA | Johannesburg, South Africa | Kuala Lumpur, Malaysia | Leiden, The Netherlands | Mumbai, India | Salisbury, UK | Santiago, Chile |







## Importance of energy conservation

- Earth's natural resources are limited
- CO<sub>2</sub> emissions are rising contributing to global warming
- Air conditioning running cost of a laboratory is usually 3 times of a similar sized office
- Energy conservation can reduce energy cost
- Increase financial capital





# Reducing energy usage in laboratory

- Green laboratory design
- Energy efficient equipment
- Do not over size equipment eg. Heating system
- Maintaining good air ductwork
- Energy efficient designs (fume hoods)
  - Auxiliary air hoods
  - Variable air volume hoods
  - Low velocity fume hoods
- Good laboratory habits



- Daylight in laboratories
- Energy recovery system in ventilation
- Manifold exhaust systems
- On site power generation system
- Improve water efficiency in laboratory





#### **Daylight in laboratories**

- Studies shown that daylighting helps increase productivity and enhance performance
- Introduce daylighting into laboratories to lower lighting cost
- Daylighting come from 3 sources: External reflection, internal reflection, direct illumination



relief to increase larea illuminated



#### **Energy recovery system in ventilation**

Air to air exchange using enthalpy wheels





### **Energy recovery system in ventilation**

Hot external air is preconditioned by relatively cool waste air





### **Energy recovery system in ventilation**

• Run - around loops





#### Manifold exhaust system

- Reduces fan power due to lower pressure drop in larger ductwork
- Reduces initial cost due to easier installation and less ductwork required
- Common exhaust fan will require a backup fan system, which will provide redundancy and therefore enhance user safety
- Less conditioned air exhausted





#### On site power generation

- Provide laboratories with reliable power source
- Avoid transmission and distribution cost of electricity
- Allow both electricity and heat be produced together
- Detailed life cycle study must be done to ensure cost effectiveness





#### Improve water efficiency in laboratory

- Laboratories uses more water per square foot then normal buildings
- Use equipment that circulates cooling water
- Do studies to find optimal concentration ratio for laboratory cooling towers
- Use alternative water sources
  - Rainwater harvesting
  - Condensate recovery





## Use energy efficient equipment

- Change lighting to energy savings bulbs
  - Use electronic ballast to improve efficiency
- Use energy efficient refrigerators
  - Energy Star rating ~ up to 40% less energy usage
  - EU Energy Labeling
- Air conditioning system with zonal control
  - Able to separate different rooms into zones
  - Reduce operating cost







# Sizing of equipment

- Engineer may have tendency to oversize central cooling and heating system
  - Provide significant margin of error builds in flexibility and reliability
  - Reduce chances of litigation and improve comfort
- Over sizing increase energy consumption
- Right sizing is the better strategy





### **Ductwork**

- Ensure no leakage
- Insulate the ductwork where possible to reduce energy exchange with surrounding air
- Regularly do maintenance checks to ensure ductwork is performing optimally



Broken duct beneath insulation



A portable ductwork leakage tester



### **Ductwork**



- Leaky joints in return ducts
- Leaky return plenum and furnace cabinet 3.
  - Unsealed filter access
- 4. Furnace (or air handler) located in garage or other unconditioned space
  - Leaky joints and seams in supply ducts
  - Gaps around register boots
- Closed doors block air flow through house

6.



## Energy efficient designs - Fume hood

### Auxiliary air fume hoods

- Takes in air from atmosphere not from room
- Reduce load on air conditioning / heating
- Reduce running cost of air conditioning / heating





## Energy efficient designs - Fume hood

- Variable air volume hoods
  - In built damper that restricts air flow based on sash opening
  - Reduce air flow when not in use
  - Reduce running cost of air conditioning / heating





## Energy efficient designs - Fume hood



- High performance low velocity fume hood
  - Lower air flow into hood
  - Less air to be heated / cooled
  - Smaller air conditioner / heating system needed
  - Lower installation cost



## High performance fume hood

- \*Depending on climate and system design, estimated energy costs for fume hoods range from approximately US\$3.40-\$7.40/cfm (US\$130-\$260/m³-min), based on face velocities of 0.5m/s (100fpm) at full sash open position
- Frontier Acela operates safely at 60fpm (0.3m/s) at 18" (457mm) or full open sash position while maintaining excellent ASHRAE and EN containment
- Energy savings of up to US\$5,735 annually





<sup>\*</sup> Energy use and savings potential for laboratory fume hoods, Evan Mills, Dale Sartor; Energy, 2003

## Laboratory fume hood energy cost



<sup>\*</sup> Energy use and savings potential for laboratory fume hoods, Evan Mills, Dale Sartor; Energy, 2003



# Comparison of different designs

|                                                     | Conventional<br>Fume Hood                       | Variable Air Volume<br>(VAV) Fume Hood                                                  | High<br>Performance<br>Low Flow Fume<br>Hood                                |
|-----------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Working<br>Principle                                | 0.5m/s (100fpm)<br>@ full open sash<br>position | 0.5m/s (100fpm) @ all<br>sash positions with<br>help of sophisticated<br>control system | 0.3m/s (60fpm) @ 457mm(18") sash opening using advanced aerodynamic designs |
| Initial cost                                        | Low                                             | High                                                                                    | Medium                                                                      |
| Running Cost                                        | Very High                                       | Low                                                                                     | Low                                                                         |
| Ease of installation, commissioning and maintenance | Easy                                            | Difficult                                                                               | Easy                                                                        |



### Reduction in exhaust volume

|                 | Exhaust Volume                                |                                                             |                               |  |
|-----------------|-----------------------------------------------|-------------------------------------------------------------|-------------------------------|--|
| Fume Hood Width | Frontier Acela<br>0.3m/s(60fpm)<br>@457mm/18" | Conventional Fume Hood<br>0.5m/s(100fpm)<br>@full sash open | % Reduction in Exhaust Volume |  |
| 1.2m(4')        | 492cmh/290cfm                                 | 1296cmh/763cfm                                              | 62%                           |  |
| 1.5m(5')        | 642cmh/378cfm                                 | 1400cmh/824cfm                                              | 54%                           |  |
| 1.8m(6')        | 793cmh/467cfm                                 | 1543cmh/908cfm                                              | 49%                           |  |
| 2.4m(8')        | 1094cmh/644cfm                                | 2372cmh/1396cfm                                             | 54%                           |  |





## Example - 4ft fume hood



By reducing face velocity, potential savings per year in New York's climate is \$4,480 This does not include reduced installation cost for smaller sized blower and air conditioning system due to lower air flow

<sup>\*</sup> Concept and methodology by Evan Mills and Dale Sartor; Web programming and GUI by Christopher Bolduc



## Increase in capacity

- Usually labs are "starved" for air
  - Due to expansion or other reasons
- In some instances, low airflows cause inadequate exhaust and increased potential for hood spillage.
- Increasing airflow is very costly
- Replace conventional fume hoods with high performance low flow fume hood
- Able to substantially reduce air flow of each fume hood
- Allow more air flow to be allocated for additional fume hoods
- Reduce overall expansion cost



## Sample calculation

- Capacity for a 50-hood lab building
- The building uses a 330 ft<sup>2</sup> laboratory planning module and has one 6-ft. benchtop chemical hood per module. Assuming average utility rates and Midwestern U.S. weather patterns. The base case is a 6-ft bench hood with 1200 cfm of exhaust, operating continuously year-round.
- Base Case: Older-style Conventional hoods, minimal controls (1200 cfm)
- 1200 cfm X 50 hoods = 60,000 cfm
- New high performance low flow fume hood (720cfm)
- $60,000 \text{ cfm} \div 720 \text{ cfm/hood} = 83 \text{ hoods}$
- Possible increase in number of fume hoods = 33 more fume hoods
- More than 65% increase in capacity based on current air flow utility.



## Good laboratory habits

- Switch off equipment when not in use
- Close sash of fume hoods when not in use
- Regular maintenance checks







## Looking ahead....

- Energy conservation is important
  - Financial gains
  - Everyone's responsibility
- Make use of technology to improve energy efficiency
- Maintain ductwork
- Use energy efficient equipment
  - High performance low velocity fume hood >> Esco Frontier Acela
- Practice good habits

